Package: varclust 0.10.0

varclust: Variables Clustering

Performs clustering of quantitative variables, assuming that clusters lie in low-dimensional subspaces. Segmentation of variables, number of clusters and their dimensions are selected based on BIC. Candidate models are identified based on many runs of K-means algorithm with different random initializations of cluster centers.

Authors:Piotr Sobczyk, Stanislaw Wilczynski, Julie Josse, Malgorzata Bogdan

varclust_0.10.0.tar.gz
varclust_0.10.0.zip(r-4.5)varclust_0.10.0.zip(r-4.4)varclust_0.10.0.zip(r-4.3)
varclust_0.10.0.tgz(r-4.4-any)varclust_0.10.0.tgz(r-4.3-any)
varclust_0.10.0.tar.gz(r-4.5-noble)varclust_0.10.0.tar.gz(r-4.4-noble)
varclust_0.10.0.tgz(r-4.4-emscripten)varclust_0.10.0.tgz(r-4.3-emscripten)
varclust.pdf |varclust.html
varclust/json (API)

# Install 'varclust' in R:
install.packages('varclust', repos = c('https://psobczyk.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/psobczyk/varclust/issues

On CRAN:

4.32 score 3 stars 14 scripts 93 downloads 1 mentions 8 exports 12 dependencies

Last updated 3 years agofrom:c2b23b96a1. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 21 2024
R-4.5-winERROROct 21 2024
R-4.5-linuxERROROct 21 2024
R-4.4-winERROROct 21 2024
R-4.4-macERROROct 21 2024
R-4.3-winERROROct 21 2024
R-4.3-macERROROct 21 2024

Exports:data.simulationdata.simulation.factorsintegrationmisclassificationmlcc.bicmlcc.kmeansmlcc.repsshow.clusters

Dependencies:codetoolsdigestdoParalleldoRNGforeachiteratorslatticeMatrixpeselRcppRcppEigenrngtools

varclust package tutorial

Rendered fromvarclustTutorial.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2020-03-08
Started: 2014-11-01