Package: varclust 0.10.0
varclust: Variables Clustering
Performs clustering of quantitative variables, assuming that clusters lie in low-dimensional subspaces. Segmentation of variables, number of clusters and their dimensions are selected based on BIC. Candidate models are identified based on many runs of K-means algorithm with different random initializations of cluster centers.
Authors:
varclust_0.10.0.tar.gz
varclust_0.10.0.zip(r-4.5)varclust_0.10.0.zip(r-4.4)varclust_0.10.0.zip(r-4.3)
varclust_0.10.0.tgz(r-4.4-any)varclust_0.10.0.tgz(r-4.3-any)
varclust_0.10.0.tar.gz(r-4.5-noble)varclust_0.10.0.tar.gz(r-4.4-noble)
varclust_0.10.0.tgz(r-4.4-emscripten)varclust_0.10.0.tgz(r-4.3-emscripten)
varclust.pdf |varclust.html✨
varclust/json (API)
# Install 'varclust' in R: |
install.packages('varclust', repos = c('https://psobczyk.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/psobczyk/varclust/issues
Last updated 3 years agofrom:c2b23b96a1. Checks:OK: 1 ERROR: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | ERROR | Nov 20 2024 |
R-4.5-linux | ERROR | Nov 20 2024 |
R-4.4-win | ERROR | Nov 20 2024 |
R-4.4-mac | ERROR | Nov 20 2024 |
R-4.3-win | ERROR | Nov 20 2024 |
R-4.3-mac | ERROR | Nov 20 2024 |
Exports:data.simulationdata.simulation.factorsintegrationmisclassificationmlcc.bicmlcc.kmeansmlcc.repsshow.clusters
Dependencies:codetoolsdigestdoParalleldoRNGforeachiteratorslatticeMatrixpeselRcppRcppEigenrngtools